
¹⁵N Double-Labeled Guanosine from Inosine through Ring-Opening-Ring-Closing and One-Pot Pd-Catalyzed C-O and C-N Cross-Coupling Reactions

Joaquim Caner and Jaume Vilarrasa*

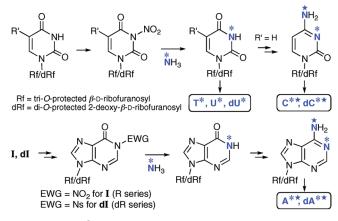
Departament de Química Orgànica, Facultat de Química, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Catalonia, Spain

jvilarrasa@ub.edu

Received April 25, 2010

 $[N,1^{-15}N_2]$ -Guanosine, or $[1,NH_2^{-15}N_2]$ -guanosine, and derivatives were prepared from tri-*O*-acetylinosine, via *N*-nitration and reaction with ¹⁵NH₂OH, followed by conversion of the ¹⁵N-labeled 1-hydroxyinosine to the corresponding 2,6-dichloropurine riboside. The sequential one-pot C–O and C–N key couplings of this dichloro derivative with PhCH₂OH and PhCO¹⁵NH₂ or ⁱPrCO¹⁵NH₂ was achieved in good overall yields, with Pd(0)–Xantphos as the best choice of five different catalytic systems examined.

Nucleosides labeled with ¹⁵N at specific positions and, thus, selectively labeled oligonucleotides, DNAs, and RNAs have provided key information (such as distinguishing the ¹⁵N-H protons and characterizing ¹⁵N-H···¹⁵N hydrogen bonds by ¹H and ¹⁵N NMR) on nucleic acid structures and nucleic acid-protein interactions.¹


In the 1990s, taking advantage of the unexpectedly easy *N*-nitration of pyrimidine nucleosides, we discovered a new reaction in which the addition of the nucleophile ¹⁵NH₃ was followed by ring-opening–ring-closing (RORC) steps,² which showed some parallelism with other S_NRORC or

(3) Review: van der Plas, H. C. Adv. Heterocycl. Chem. 1999, 74, 1.

4880 J. Org. Chem. **2010**, 75, 4880–4883

ANRORC processes.³ The process could be applied to inosines,⁴ from which we also obtained ¹⁵N double-labeled adenosines. When N-nitration failed (dI series), the 2-nitrobenzenesulfonvl group (Ns) was the best alternative.^{5,6} The overall process is summarized in Scheme 1, where asterisks on N (N* for internal labels, N^{\star} for amino groups) mean \geq 98% of ¹⁵N at the indicated position(s). The pros of this general procedure are the following: all internal labels were introduced at room temperature (rt); only 1.1 equiv of ¹⁵Nlabeled reagents was employed in all labeling steps; and sugar-modified nucleosides and appropriately C-substituted nucleobases may be amenable to it. The con is that we were unable to convert [1-15N]-inosines to the double-labeled $[N,1-^{15}N_2]$ -guanosines efficiently, in a short number of steps (not involving the degradation of inosine or ex-novo synthesis⁷). Due to this, G^{**} and dG^{**} are lacking in Scheme 1.

SCHEME 1. ¹⁵N Labeling of Nucleosides by RORC^{2,4,5}

Jones et al.,⁸ by means of a Dimroth rearrangement from 1-alkoxy adenosines, prepared a series of ¹⁵N and ¹⁵N,¹³C-multilabeled guanosines. In connection with our objective of achieving all the ¹⁵N₂-natural nucleosides in the most efficient way, we report here an alternative approach to guanosines labeled both at N1 and on amino N, based on our

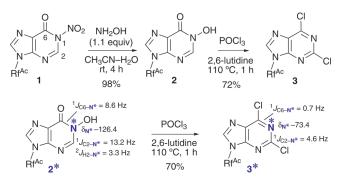
Published on Web 06/15/2010

DOI: 10.1021/jo100808w © 2010 American Chemical Society

⁽¹⁾ For recent, representative applications, see: (a) Bdour, H. M.; Kao, J. L.-F.; Taylor, J.-S. J. Org. Chem. 2006, 71, 1640. (b) Dingley, A. J.; Nisius, L.; Cordier, F.; Grzesiek, S. Nat. Protoc. 2008, 3, 242. (c) Wang, W.; Zhao, J.; Han, Q.; Wang, G.; Yang, G.; Shallop, A. J.; Liu, J.; Gaffney, B. L.; Jones, R. A. Nucleosides, Nucleotides Nucleic Acids 2009, 28, 424. (d) Baral, B.; Kumar, P.; Anderson, B. A.; Ostergaard, M. E.; Sharma, P. K.; Hrdlicka, P. J. Tetrahedron Lett. 2009, 50, 5850.

 ^{(2) (}a) Bou, V. Ph.D. Thesis, Universitat de Barcelona, 1992. (b) Ariza, X.;
 Bou, V.; Vilarrasa, J.; Tereshko, V.; Campos, J. L. Angew. Chem., Int. Ed. 1994, 33, 2454. (c) Ariza, X.; Farràs, J.; Serra, C.; Vilarrasa, J. J. Org. Chem. 1997, 62, 1547. (d) Ariza, X.; Vilarrasa, J. J. Org. Chem. 2000, 65, 2827.

^{(4) (}a) Ariza, X. Ph.D. Thesis, Universitat de Barcelona, 1995. (b) Ariza, X.;
Bou, V.; Vilarrasa, J. J. Am. Chem. Soc. 1995, 117, 3665. (c) Terrazas, M.; Ariza,
X.; Farràs, J.; Guisado-Yang, J. M.; Vilarrasa, J. J. Org. Chem. 2004, 69, 5473.
(5) (a) Terrazas, M.; Ariza, X.; Vilarrasa, J. Org. Lett. 2005, 7, 2477.

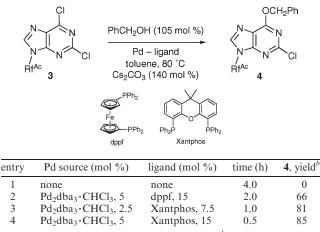

⁽b) Terrazas, M., Ariza, X., Vilarrasa, J. Org. Lett. 2005, 7, 2477.
(b) Terrazas, M.; Ariza, X.; Vilarrasa, J. Tetrahedron Lett. 2005, 46, 5127.
(c) For a related work, see: Terrazas, M.; Ariza, X.; Farras, J.; Vilarrasa, J. Chem. Commun. 2005, 3968.

⁽⁶⁾ Use of *N*-2,4-dinitrophenyl dI (Scheme 1, EWG = DNP) for the same purpose has been reported: (a) De Napoli, L.; Messere, A.; Montesarchio, D.; Piccialli, G. *J. Org. Chem.* **1995**, *60*, 2251. (b) De Napoli, L.; Messere, A.; Montesarchio, D.; Piccialli, G.; Varra, M. J. Chem. Soc., Perkin Trans. 1 **1997**, 2079. (c) Catalanotti, B.; De Napoli, L.; Galeone, A.; Mayol, L.; Oliviero, G.; Piccialli, G.; Varra, M. *Eur. J. Org. Chem.* **1999**, 2235. We also examined the case where EWG = COO'Bu in the inosine series, but nucleophiles tend to attack at the C atom of the carboxyl group (with deprotection) rather than the C2 (or C4) carbon atoms (no RORC process). (7) For example, from ¹⁵N-labeled AICA-riboside: (a) Bleasdale, C.;

⁽⁷⁾ For example, from ¹⁵N-labeled AICA-riboside: (a) Bleasdale, C.; Ellwood, S. B.; Golding, B. T.; Slaich, P. K.; Taylor, O. J.; Watson, W. P. J. Chem. Soc., Perkin Trans. 1 1994, 2859. (b) Abad, J. L.; Gaffney, B. L.; Jones, R. A. J. Org. Chem. 1999, 64, 6575.

^{(8) (}a) Pagano, A. R.; Zhao, H.; Shallop, A. J.; Jones, R. A. J. Org. Chem. 1998, 63, 3213. (b) Shallop, A. J.; Gaffney, B. L.; Jones, R. A. J. Org. Chem. 2003, 68, 8657 and references cited therein.

SCHEME 2. From *N*-Nitroinosines to *N*-Hydroxyinosines and to 2,6-Dichloro Derivative 3


above-mentioned RORC procedure and on Pd-catalyzed C-O and C-N bond forming reactions.

First, triacetylated *N*-nitroinosine **1** was prepared in 80% yield from tri-*O*-acetylinosine by our *N*-nitration protocol^{4,5} (with a large excess of CF₃COONO₂ at -40 °C). Treatment of **1** with HONH₃+Cl⁻ (1.1 equiv) and NaOAc (2.2 equiv) in 1:1 CH₃CN-H₂O at rt afforded *N*-hydroxy derivative **2** in 98% yield (Scheme 2), via a polar intermediate (an open species according to ¹H NMR) that disappeared to give the desired compound within 4 h. The fact that this RORC step could be carried out with only 1.1 equiv of hydroxylamine was instrumental in using it as an N1-labeling procedure,⁹ as otherwise scaling up of the overall process would be economically unpractical. This indirect *N*-hydroxylation procedure is general since it could be applied to other protected inosines (tri-*O*-TBS and 5'-*O*-TBS-2',3'-*O*-isopropylidene) in ca. 80% overall yields. A sample of the ¹⁵N-labeled compound **2*** was prepared

A sample of the ¹⁵N-labeled compound **2**^{*} was prepared by this protocol, that is, from **1** and only 1.05 equiv of HO¹⁵NH₃⁺Cl⁻ (obtained by us from reduction of Na¹⁵NO₂,¹⁰ but also commercially available with 98% ¹⁵N).

We took advantage of a known reaction of purine Noxides¹¹ for the conversion of N-hydroxyinosine **2** to the corresponding 2,6-dichloropurine nucleoside, **3** (Scheme 2). This involves heating with a large excess of POCl₃ and 2,6lutidine or 2-picoline.¹² The same reaction did not work with POBr₃ (and only the bromination of position 6 took place with POBr₃ and N,N-diethylaniline in toluene). We applied this procedure to the conversion of a sample of **2*** to **3***.

TABLE 1. Pd-Catalyzed Couplings of 3 with PhCH₂OH^a

^aAt 0.1 M concentrations in toluene at 80 °C. ^bIsolated yield, in %.

We envisaged replacing both chloride ions of **3** consecutively, by means of appropriate Pd-catalyzed couplings. Outstanding studies in the nucleoside field have been published recently, mainly involving C–N couplings (Buchwald– Hartwig reactions) of bromo- and iodopurines.¹² Although C–Cl bonds are much less reactive in Pd-catalyzed couplings, new ligands have been developed to deal with aromatic chlorides.¹³

With this background some approaches were soon ruled out.¹⁴ Moreover, when **3** was heated to 80 °C in toluene, with 1.1 equiv of PhCONH₂, small amounts of Pd₂dba₃·CHCl₃, diphosphines of different bite angles (dppf,¹⁵ DPEphos,^{16a} or Xantphos¹⁶), and Cs₂CO₃, only the product substituted on C6 was formed, confirming that position 6 is intrinsically more reactive. Thus, the substitution at C6 has to be carried out before that at C2. The S_NAr-like replacement of 6-Cl by different amounts of benzyl alcohol and strong bases gave the desired **4**, although in poor yields; this was mainly due to the workup difficulties, when an excess of benzyl alcohol was used, and to the byproducts from double addition and deacylation reactions.

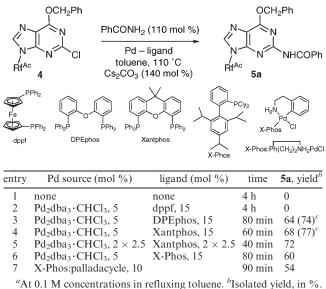
In this context, we examined the following protocol (see Table 1): **3** was mixed in toluene with PhCH₂OH,

⁽⁹⁾ Identical treatments of the *N*-Ns derivative relating to 1 (with Ns instead of NO₂ as EWG) afforded complex mixtures (containing *N*-deprotected compounds as well as hydrolyzed and pyrimidine ring-cleaved species) with insignificant amounts of the desired *N*-hydroxy compound, **2**. With DNP instead of NO₂ as EWG, we needed 5-10 equiv of NH₂OH and heating to convert 1 to **2**.

^{(10) (}a) Rajendran, G.; Van Ettern, R. L. Inorg. Chem. 1986, 25, 876.
(b) Tao, T.; Alemany, L. B.; Parry, R. J. Org. Lett. 2003, 5, 1213.

^{(11) (}a) Kawashima, H.; Kumashiro, I. Bull. Chem. Soc. Jpn. **1967**, 40, 639. (b) Robins, M. J.; Uznanski, B. Can. J. Chem. **1981**, 59, 2601. (c) We could also have arrived at 2* from [1-¹⁵N]-adenosine, through its N-oxide, followed by a deamination–hydroxylation reaction according to the procedure of Robins and Uznanski. However, it was preferable to enter the internal label as late as possible. Also, we were interested in examining the performance of the reaction of N-nitro nucleosides with NH₂OH.

^{(12) (}a) Piguel, S.; Legraverend, M. J. Org. Chem. 2007, 72, 7026 and references cited therein. (b) Vandromme, L.; Legraverend, M.; Kreimerman, S.; Lozach, O.; Meijer, L.; Grierson, D. S. Bioorg. Med. Chem. 2007, 15, 130. (c) Li, X.; Vince, R. Bioorg. Med. Chem. 2006, 14, 5742. For C–N couplings of nucleoside arylsulfonates with aromatic amines, see: (d) Gunda, P.; Russon, L. M.; Lakshman, M. K. Angew. Chem., Int. Ed. 2004, 43, 6372. For alternative routes via S_NAr reactions, see: (e) Liu, J.; Robins, M. J. J. Am. Chem. Soc. 2007, 129, 5962. (f) Kamaike, K.; Kayama, Y.; Isobe, M.; Kawashima, E. Nucleosides, Nucleotides Nucleic Acids 2006, 25, 29 and references cited therein.

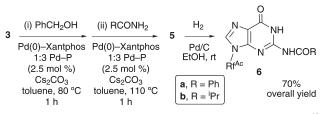

⁽¹³⁾ For a review, see: Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.

^{(14) (}a) Substitution of OH for the more reactive 6-Cl by means of a simple treatment with KOH (1 M in CH₃CN-H₂O) at rt afforded fully deprotected 2-chloroinosine. This compound can be converted to guanosine, but under very harsh conditions, probably because the anion is formed and is very reluctant to undergo a second substitution reaction. (b) For an example of a substitution, with a big excess of NH₃/MeOH in a sealed tube at 145 °C for 72 h, see: Nord, L. D.; Dalley, N. K.; McKernan, P. A.; Robins, R. K. J. Med. Chem. **1987**, *30*, 1044.

⁽¹⁵⁾ Recent review: Fihri, A.; Meunier, P.; Hierso, J.-C. Coord. Chem. Rev. 2007, 251, 2017.

⁽¹⁶⁾ For a very recent review on diphosphines, see: (a) Birkholz, M.-N.; Freixa, Z.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2009, 38, 1099. Xantphos preparation: (b) Hillebrand, S.; Bruckmann, J.; Krueger, C.; Haenel, M. W. Tetrahedron Lett. 1995, 36, 75. (c) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J. Organometallics 1995, 14, 3081. Pd₂dba₃ · CHCl₃ and Xantphos in a 1:3 molar ratio, and 140 mol % of Cs₂CO₃ (in 1,4-dioxane at 100 °C), were recommended for intermolecular amidations of ArBr/ArOTf/ArI: (d) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043. (e) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101. For the effect of bidentate ligands, see: (f) Fujita, K.; Yamashita, M.; Puschmann, F.; Alvarez-Falcon, M. M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9044. Also see ref 12a. Pd(0)/Xantphos was also shown to be useful for the N-arylation of amino groups of nucleosides: (g) Ngassa, F. N.; DeKorver, K. A.; Melistas, T. S.; Yeh, E. A.-H.; Lakshman, M. K. Org. Lett. 2006, 8, 4613.

TABLE 2. Pd-Catalyzed Couplings of 4 with PhCONH₂^a



"Yields with 10 mol % of Pd_2dba_3 · CHCl₃ are in parentheses.

Pd₂dba₃·CHCl₃, dppf or Xantphos, and Cs₂CO₃ and heated to 80 °C. With Cs₂CO₃ but without the catalyst (entry 1) no substitution took place. With all the additives, the 6-*O*-CH₂Ph derivative, **4**, was formed quite rapidly with both diphosphines (entries 2–4). The conditions of choice turned out to be those of entry 3 (2.5 mol % of catalyst, 0.05 equiv of Pd), since the addition of twice the amount of catalyst and ligand (entry 4) improved the yield only slightly. DPEphos gave similar results to Xantphos, while reactions with X-Phos (7.5 mol %, with 2.5 mol % of Pd₂dba₃·CHCl₃) were too slow (data not included in Table 1 to save space).

We then investigated the best phosphine ligand for the replacement of the second Cl (the Cl of 4) by benzamide (PhCONH₂) as an ammonia synthetic equivalent. Table 2 summarizes the main results, in refluxing toluene, since the couplings did not progress at 80 °C. Refluxing 1,4-dioxane and heating for longer times were counter-indicated with our substrate; both increased the percentages of decomposition and deacylation byproducts. Most of the experiments were carried out three times, ensuring that dppf was inappropriate (entry 2),¹⁷ while DPEphos (entry 3) and especially Xantphos (entry 4) afforded the highest yields of 5a. When the catalyst and ligand were added in two portions (the second one after 20 min of reaction) the disappearance of 4 was faster and the yield improved (entry 5). The monodentate X-Phos (entry 6) and the palladacycle (entry 7) were less efficient. Thus, Xantphos became our preferred ligand for these C-O/N couplings, but the low cost of DPEphos should be taken into account for larger scale reactions.

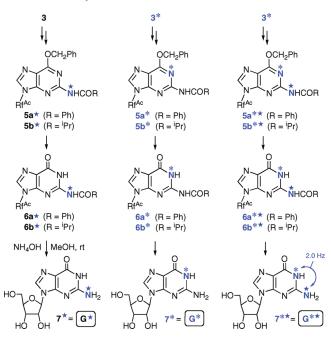
We were ready to carry out the preparation of 5a (reaction with PhCONH₂) and 5b (coupling with isobutyramide,

¹PrCONH₂) via a sequential one-pot reaction (see Scheme 3).¹⁸ We added **4** and 105 mol % of PhCH₂OH to a reaction flask containing the Pd(0)/Xantphos/Cs₂CO₃ mixture in toluene, which was heated to 80 °C. After ca. 1 h (when TLC indicated that **3** had disappeared), 110 mol % of PhCONH₂ and a second charge of Pd/Xantphos/Cs₂CO₃ were added, and a gentle reflux was then maintained for 1 h. We noted that this protocol afforded higher conversions and fewer byproduct than in experiments with the full amount of catalyst/ligand/ base introduced from the beginning. We also saved Pd and diphosphine. Yields of 70–73% of **5a** were isolated by column chromatography.¹⁹ With ^{*i*}PrCONH₂ instead of PhCONH₂, **5b** was similarly obtained.

The removal of the benzyl group of **5a** and **5b** (H₂ balloon, Scheme 3) gave **6a** and **6b**, respectively, in nearly 70% yields (overall for three steps).²⁰

With all these "preliminary" studies and results in hand, we carried out the reactions of interest. From **3** or **3***, we achieved the series of mono- and double-labeled **5a** and **5b**, **6a** and **6b**, and guanosines (7) shown in Scheme 4, by using PhCO¹⁵NH₂ (prepared from PhCOCl, ¹⁵NH₄Cl, and KOH in CH₃CN-H₂O in 97% yield) and ⁱPrCO¹⁵NH₂, similarly prepared, in the C-N cross-coupling step. In short, ¹⁵N-labeled guanosines with the standard amino protecting group for oligonucleotide synthesis (ⁱPrCO, see the **6b** series) can be prepared efficiently as well.

In summary, we synthesized the desired ¹⁵N-labeled guanosines 7^* (G^{*}) and 7^{**} (G^{**}) in seven steps from natural inosine (four steps after introducing the first label). Only inorganic sources of ¹⁵N (Na¹⁵NO₂ or HO¹⁵NH₃⁺Cl⁻, $^{15}\text{NH}_4^+\text{Cl}^-$) were used and only in nearly equivalent amounts. G^{**} has >98% of ¹⁵N at both the relevant positions for examining Watson-Crick interactions. Although the introduction of internal ¹⁵N labels in nucleosides (and in heterocyclic compounds in general) is usually much more complicated than in the amino groups, and the substitution of ¹⁵NH₂OH for NH₂NO₂ took place in a remarkable 98% yield with only 1.05 equiv of labeling source (!), we focused our attention on the optimization of the C-O and mainly the C-N bond formation reactions, as we had to convert an expensive ¹⁵N-labeled inosine derivative into single and double ¹⁵N-labeled guanosines in few steps and good yields. The sequential, or consecutive, one-pot Pd-catalyzed C-O and C-N couplings from a heteroaryl dichloride, reported here for the first time to the best of our knowledge, allowed us to reduce the amounts of Pd and of our


⁽¹⁷⁾ However, in our lab, the analogous 2-Br derivative was replaced efficiently by $PhCONH_2$ with Pd/dppf at 80 °C (Terrazas, M. Ph.D. Dissertation, Universitat de Barcelona, 2006).

⁽¹⁸⁾ For examples of related one-pot intermolecular C-C couplings, see:
(a) Molander, G. A.; Yokoyama, Y. J. Org. Chem. 2006, 71, 2493. (b) Zhang, X.; Liu, A.; Chen, W. Org. Lett. 2008, 10, 3849 and references cited therein.
(c) Beaumard, F.; Dauban, P.; Dodd, R. H. Org. Lett. 2009, 11, 1801.
Tandem couplings using two different metallic catalysts are more common.
For combinations of S_NAr and Pd-catalyzed reactions, see: (d) Tikad, A.;
Routier, S.; Akssira, M.; Guillaumet, G. Org. Biomol. Chem. 2009, 7, 5113.

⁽¹⁹⁾ In one-pot C–O and C–N coupling experiments with K_3PO_4 instead of Cs_2CO_3 the coupling reactions did work, but more slowly. With DIPEA no coupling took place.

⁽²⁰⁾ We isolated **5a** and **5b** and subjected them to simple hydrogenolysis when we might have examined the cleavage of the $O-CH_2Ph$ bond in the same flask (three steps in one pot), but the isolation of **6a** and **6b** from the final mixture was judged to be more cumbersome.

SCHEME 4. Synthesis of ¹⁵N-Labeled 5–7

preferred ligand to date (Xantphos) and to increase the overall yields.

Experimental Section

[1-¹⁵N]-2',3',5'-Tri-O-acetyl-1-hydroxyinosine (2*). A solution of $^{15}NH_2OH \cdot HCl$ (116 mg, 1.65 mmol) and NaOAc (271, 3.30 mmol) in water (12 mL) was added to a solution of 1 (660 mg, 1.50 mmol) in acetonitrile (12 mL). The reaction mixture was stirred at rt for 4 h (the pale yellow color faded and a suspension was formed of a more polar intermediate, as indicated by TLC, which slowly disappeared). The solution was partially concentrated (to remove acetonitrile) and CH₂Cl₂ and brine were added. The layers were separated. The organic layer was washed with water and dried over Na₂SO₄. Filtration and evaporation to dryness gave chromatographically pure **2*** (599 mg, 96%) as a yellowish-white foam (spectra in the Supporting Information).

Representative One-Pot Reaction. A reaction flask was charged with $Pd_2dba_3 \cdot CHCl_3$ (6.5 mg, 6.3 μ mol), Xantphos (11.2 mg, 18.9 μ mol), [1-¹⁵N]-2',3',5'-tri-O-acetyl-2,6-chloropurine (**3***, 112 mg, 0.25 mmol), and Cs₂CO₃ (115 mg, 0.35 mmol). The flask was purged with nitrogen. Anhydrous

JOCNote

toluene (1.2 mL) and benzyl alcohol (28 µL, 29.3 mg, 0.27 mmol) were added via syringe. The reaction mixture was magnetically stirred at 80 °C under nitrogen, until the reaction was complete, as shown by TLC (45 to 75 min depending on the batch). Afterward, Pd2dba3 · CHCl3 (6.5 mg, 6.3 µmol), Xantphos (11.2 mg, 18.9 µmol), Cs₂CO₃ (115 mg, 0.35 mmol), and ¹⁵N]-benzamide (33.5 mg, 0.27 mmol) were added. The reaction mixture was then heated at 110 °C under nitrogen, until the second step was complete (40 to 80 min depending on the batch of Pd). The heating bath was removed. The flask content was diluted with 20 mL of CH₂Cl₂ and filtered through a pad of Celite. The filtrate was concentrated under vacuum. The residue was purified by flash chromatography (7:3 CH₂Cl₂/ EtOAc) to afford 110 mg (73%) of $5a^{**}$ as a pale white foam: ¹H NMR (CDCl₃, 400 MHz) δ 2.04 (s, 3H), 2.10 (s, 3H), 2.15 (s, 3H), 4.43-4.55 (m, 3H), 5.66 (s, 2H), 5.98-6.00 (m, 2H), 6.10 (m, 1H), 7.29-7.38 (m, 3H), 7.49-7.60 (m, 5H), 7.93 (s, 1H), 7.98 (m, 2H), 8.66 (dd, $J_{H-N^*} = 88.9$ Hz, $J_{H-N^*} = 2.0$ Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 20.4, 20.5, 20.7, 63.3, 68.9 (d, $J_{C-N^*} = 3.8$ Hz), 70.7, 73.3, 80.1, 87.0, 119.2 (d, $J_{C-N^*} =$ 1.5 Hz, C5), 127.5, 128.2, 128.4, 128.6, 128.7, 132.2, 134.6 (d, $J_{\rm C-N^{\star}} = 9.2$ Hz), 135.8, 140.3, 152.2 (dd, $J_{\rm C-N^{\star}} = 25.2$ Hz, $J_{C-N^*} = 5.9 \text{ Hz}, \text{C2}$, 152.3 (dd, $J_{C-N^*} = 3.4 \text{ Hz}, J_{C-N^*} = 0.7$ Hz, C6), 160.9 (dd, $J_{C-N^*} = 9.1$ Hz, $J_{C-N^*} = 2.8$ Hz, C4), 164.6 (dd, $J_{C-N^{\star}} = 13.9$ Hz, $J_{C-N^{*}} = 1.3$ Hz, CO), 169.4, 169.6, 170.5; ¹⁵N NMR (CDCl₃, 40.5 MHz) δ –126.9 (dd, $J_{N^{*}-N^{\star}} =$ 6.4 Hz, $J_{N^*-H} = 2.0$ Hz, N^*), -208.8 (dd, $J_{N^*-H} = 88.9$ Hz, $J_{N^*-N^*} = 6.4$ Hz, N^*); HRMS (ESI) calcd for $C_{30}H_{30}N_{3^{-15}}N_2O_9^+$ (M + H)⁺ 606.1979, found 606.1981.

Acknowledgment. J.C. is grateful for a studentship from the Universitat de Barcelona (2003–2006), a stipend from TRIOH (FP7, European Union, contract LHSB-CT-2003-503480, during 2007), and a current fellowship from the Fundació Privada Cellex of Barcelona. The Ministerio de Educación y Ciencia provided additional support (SAF2005-24643-E). Ionela Cialicu carried out experiments with DNP derivatives of inosines and NH₂OH during her DEA studies (2007). The advice given by Dr. Jaume Farràs and Dr. Xavier Ariza (of our Department) to J.C. during his Ph.D. period is also acknowledged. This work is dedicated to Prof. Henk C. van der Plas (Emeritus Prof., University of Wageningen) and Prof. Piet van Leeuwen (ICIQ, Tarragona).

Supporting Information Available: Experimental details and copies of ¹H, ¹³C, and ¹⁵N NMR spectra of the new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.